
Research Institute for Advanced Computer Science
NASA Ames Research Center

BEYOND FORMALISM

Peter J. Denning

09_

G3161

N91-37019

RIACS Technical Report 91.04

3anuary 17, 1991





Beyond Formalism

Peter J. Denning

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report TR-91.4
17 Jan 91

The ongoing debate over the role of formalism and formal specifications in software features many
speakers with diverse positions. Yet, in the end, they share the conviction that the requirements of a
software system can be unambiguously specified, that acceptable software is a product demonstrably
meeting the specifications, and that the design process can be carried out with little interaction
between designers and users once the specification has been agreed to. This conviction is part of a
larger paradigm prevalent in American management thinking, which holds that organizations are
systems that can be precisely specified and optimized. This paradigm, which traces historically to the
work of Frederick Taylor in the early 1900s, is no longer sufficient for organizations and software
systems today. In the domain of software, a new paradigm, called user-centered design, overcomes
the limitations of pure formalism. Pioneered in Scandinavia, user-centered design is spreading
through Europe and is beginning to make its way into the United States.

This is a preprint of the column The Science of Computing for
American Scientist 79, No. 1 (January-February 1991).

Work reported herein was supported in part by Cooperative Agreement NCC 2-387
between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association Ct.ISRA).





Beyond Formalism

Peter J. Denning

Research Institute for Advanced Computer Science

17 Jan 91

Among computer scientists there is a lively debate over the role of formalism in

software engineering. One side argues that if formal methods were used more widely to

prove that programs meet their specifications, we would suffer far fewer undependable

programs and unsafe software systems. The other side argues that formal verification has

not been proved practical, and that this situation is unlikely to improve soon. The two

sides correspond roughly to the perspectives of mathematics and engineering.

The mathematical side is well represented by Edsger Dijkstra of the University of

Texas at Austin, whose life work exemplifies elegant formal methods for designing

correct programs. He has recently advocated that the introductory college course in

computing avoid programming and concentrate on mathematics applicable to building

correct algorithms (1). David Gries of Cornell University argues similarly that

complicated software structures could be routinely derived from their specifications by

practitioners well versed in the notation and use of formal logic (2).



2/Beyond Formalism TR-91.4 (17 Jan 91)

The engineering side is well represented by Frederick P. Brooks, Jr., of the

University of North Carolina at Chapel Hill, who is convinced that "the hard part of

building software [is] the specification, design, and testing of the conceptual construct,

not the labor of representing it and testing the fidelity of the representation." (3) He says

that software is inherently complex because it does not have regular, repeated structures

and because the state space of a software system--the set of all states it might occupy--is

too large to comprehend directly. Brooks warns against putting too much faith in

technologies that help simplify parts of the programming process without addressing the

complexity question--technologies such as new high-level languages, object-oriented

programming, artificial intelligence, expert systems, automatic programming, graphical

program ming, program verification, environments and tools, and workstations. He says

that major payoffs will result from buying software rather then building it anew, from

rapid prototyping, from incremental development, and from cultivating Great Designers.

David Parnas of Queen's University says that the lack of competence with software

is rooted in computer-science curricula, which do not prepare students well for real work

in software engineering. Computing curricula, he says, have emphasized specialized

topics that reflect the research interests of the founders of the discipline. He advocates a

return to the basics of the traditional engineering curriculum (4).

The Correctness Theorem

The technologies embodied in the functions of software systems rely on many

formalisms: calculus, differential equations, discrete mathematics, linear algebra,

probability, statistics, graph theory, numerical analysis, control theory, electrical circuit



TR-91.4(17Jan91) BeyondFormalism/3

theory,informationtheory,andsignalprocessing.Evenastheseformalismsmake

softwarework, logic notationhelpsin thedesignof workingsoftware.

Nearlyeverycomputerscientistandengineerbelievesthat aprogramor asoftware

systemmusthaveapreciseandunambiguousspecificationof exactlywhatit is supposed

to do. Logic notationprovidesalanguagefor suchspecifications.Manyprogrammers

would like someway to checkwhethertheprogramstheyproducedmeettheformal

specification--thatis, to provetheso-calledcorrectnesstheorem:"Everyresultproduced

by thisprogramis allowedby thespecificationsfor thegiveninput."

Performingsuchacheckentailstracingthepossibleactionsthata programcan

evoke;muchof thedebateoverformalmethodshasfocusedon thefeasibilityof three

basicstrategiesfor thischecking. Onestrategyis to useatheoremproverto trace

throughtheprogram,enumeratinglogic formulasfor all the intermediatelemmasand

eventuallydeterminingwhetheror not thecorrectnesstheoremis true. Anotherstrategy

is to designprogramswithin a developmentsystemthatrequirestheprogrammerto

specifya logic formulaat theendof eachcodeblock,or otherunit of programstructure.

Eachformulamustbecometrueasaconsequenceof executingits associatedblock,and

theformula at theendof theentireprogrammustimply thespecification.Thethird

techniqueis to developteststhatonly acorrectprogramcanpass.

Despitethediversity of views aboutthepracticalityof formal specifications,most

commentatorson theissuesharetheconvictionthat,in theend,therequirementsof a

softwaresystemcanbeunambiguouslyspecified,andthatmeetingthosespecificationsis

anappropriatecriterionfor evaluatingsoftware.Most observersalsoagreethatthe

designprocesscanbecarriedoutwith little interactionbetweendesignersandusersonce



4/BeyondFormalism TR-91.4(17Ian91)

thespecificationhasbeenagreedto. They sharethevision of trainingsoftwaredesigners

to regularly andsystematicallyproducesystemsthatareassessedby their usersas

helpful, relevant,reliableanddependable.

And yet hardquestionspersist. It is anoldjoke of softwareengineeringthatonce

usersseethesoftwarein action,theyexclaim,"Oh, it doeswhatI saidbut notwhat I

meant!" Why isn't thisrecognizedin software-designpractice? Peopleadapttheway

theywork to thestrengthsandweaknessesof the software--sowhydo somanydesigners

teachthatthe specificationis fixed? Muchof whatpeopledo is embeddedin their

routinedaily practicesandoften is not obvious--sowhydo somanydesignersteachthat

thespecificationis formalizableat all?

Management

I seemanysimilaritiesbetweenapproachesto softwaredesignandapproachesto

managingorganizations.A love of formal specificationpermeatesnot only software

engineeringbut alsoinstitutionsandbureaucracies.A solution to the management

problem might well make it possible for software engineers to use formalism more

effectively, but more formalism is not going to solve the management problem. More

formalism is not going to solve the software problem either.

By management I mean the discipline of forming, mobilizing, nurturing and guiding

groups of people toward specific missions. It is a discipline of communication. Since

nearly everyone works on a team or in an organization, good management is a matter of

great concern. Our leading software engineers recognize this: Barry Boehm discusses

how to design organizations capable of effective software production (5); Gerald



TR-91.4 (17 Jan 91) Beyond Formalism/5

Weinberg examines how to produce and nurture technical excellence in software teams

(6), and Brooks reminds us of Conway's Law, which says that systems tend to resemble

the organizations that built them (7).

Much practice for software design, however, ignores communication between

designers and users. Software development is treated as a process of transforming formal

specifications into programs that function correctly when executed. This model of

software design appears frequently in textbooks and is the standard paradigm taught to

students. It is a context-free model; it pretends that once the formal specification has

been given, little or no communication needs to take place between those who will work

with the system and those who design it.

In the first decade of this century Frederick Taylor introduced scientific

management, a perspective founded on the assumption that work obeys scientific laws.

He showed how factory operations could be decomposed into small tasks, with each task

to be performed by one worker, and he claimed that for each task there was one best

method that could be discovered by time-and-motion studies. The role of managers was

to write up detailed formal descriptions of the tasks, to set the lowest price commensurate

with the skill levels needed to carry out the tasks, and to find people whose personal

characteristics matched them well to the jobs as described. Management's operational

role was to supervise workers to be sure they performed tasks in the proper way and

according to the master production plan created by managers.

This perspective led to major improvements in American business that produced

American leadership in manufacturing lasting well into the 1960s. Over the past half-

century, many Americans have come to accept this model as the one best method of



6/BeyondFormalism TR-91.4(17Jan91)

operatingorganizationsandgovernment.Managersroutinely look for ways to formally

specifyourorganizationswith organizationalcharts,booksof rulesandprocedures,

formaljob descriptions,andteststo matchpeopleoptimally to availablejobs.

Communicationfrom managementis usuallyinterpretedasinstructionsor orders.

Formalismis alsoentrenchedin therulesourgovernmentusesto specifyhow the

bureaucracieswork andhow theyshouldinteractwith privatecontractors--government

givesformal specification,contractordelivers.

This observationis not my personalconclusion. Commentingrecentlyon American

business,Kososuke Matsushita, chairman of the Matsushita Electric Company in Japan,

said: "We will win and you will lose. You cannot do anything about it because your

failure is an internal disease. Your companies are based on Taylor's principles. Worse,

your heads are Taylorized too. You firmly believe that sound management means

executives on the one side and workers on the other, on the one side men who think and

on the other side men who can only work. For you, management is the art of smoothly

transferring the executive's idea to the worker's hands." (8)

Do you see the similarity between the paradigms of sofware and organizational

design? And between communication between users and software designers, and

communication between managers and workers? It is all very formal, context-free, and

built on unidirectional communication. Japanese leaders see this as a major weakness, so

ingrained that they can talk about it freely: We appear so Taylorized (formalized) as to

be incapable of taking action to meet their challenge.

The essence of the limitation of formal, rule-based management is its inability to

cope with rapid change, unexpected developments, and competition. The intelligence



TR-91.4(17Jan91) BeyondFormalism/'7

andplanningof managersandexecutivesis insufficientfor successin theglobal

marketplace.Everyemployeemustbecomeafull participantin themissionof an

organizationandin creatinginnovationsfor thefulfillment of thatmission. TomPeters

writeseloquentlyaboutmanagementin aworld of apparentchaos(9).

The same limitations apply to software. This is obvious to those who see that, in

practice, software is used to help organizations get their work done. Shifting

expectations, rapid change, unexpected developments, and competition are as effective at

confounding formal specifications for software as at confounding formalized

management. The specifications often describe past conditions and prevent rapid

adaptation to new conditions. Moreover, many important aspects of people's work are

embedded in their everyday practice, where they escape the attention of designers writing

specifications.

User-centered design

A new paradigm of software design has originated in Scandinavia under the

leadership of Kristen Nygaard of the University of Oslo. It is gradually capturing the

attention of software designers in Europe and the United States. It is called user-centered

design and sometimes participatory design. It focuses on understanding the everyday

practices of the people who will use the software, so that the software can be a useful,

appropriate, dependable support for their work. In some ways this paradigm challenges

the assumption enunciated by Brooks--that complexity is inherent in the software itself--

by holding that the true source of complexity is not the internal structure of the software

but the difficulty of understanding the essence of people's work.



8/BeyondFormalism TR-91.4(17Jan91)

Lucy Suchmanreportson thework of ChristianeFloydof theUniversity of Berlin,

who, in afestschrifthonoringNygaard,outlinedaparadigmchangefor software

engineering(10,11). Floyd contrasts a product perspective for software design with a

process perspective, the former focusing on the derivation of a program from a

specification and the latter focusing on the flows of work in an organization. Eleanor

Wynn emphasizes that the way work is actually done can be found only in the daily

practices, standards, and routines of the workplace, many of which are part of the shared

understanding of the workers and are not explicitly stated as rules and principles (12).

The process perspective holds that the commitments people make to one another are

important; consequently software must help them track commitments to completion, and

the software designer must achieve a deep understanding of the types of commitments

that arise recurrently in a given organization (13). The process perspective holds that

software is not merely an artifact, but a part of the functioning organization; thus the

work of defining objectives, establishing requirements, specifying functions, evaluating

risks, making compromises, dealing with errors, and helping people learn to use and

modify the system must be the work of an ongoing collaboration between software

designers and users. It holds that the designer must understand the social context of the

workplace and not attempt to abstract away from that context to purely information-

processing aspects. It holds that people and machines have different roles that are often

not interchangeable, and the job of the designer is to find and understand the difference.

It holds that many of the errors arising in normal usage could be avoided if the designer

understood the presuppositions and habitual expectations of the users.



TR-91.4 (17 Jan 91) Beyond Formalism]9

You should not read the foregoing remarks as a call to drop formalism. On the

contrary: formalism has demonstrated remarkable technological power. You should

instead read that giving absolute priority to formalism limits what we can accomplish.

We need to go beyond formalism and learn about communication in our organizations

and in our software designs.

It is difficult for Americans brought up in the age of moon missions, interplanetary

probes, supercomputing and biotechnology to go beyond love of principles and

specifications. Nevertheless, the time has come to pay more attention to the murky,

imprecise, unformalizable domains of everyday practice, which is, after all, where design

is judged.

References

1. Edsger Dijkstra. 1989. On the cruelty of really teaching computing science.

Communications of the ACM 32, 12 (December): 1397-1414.

2. David Gries. 1991. Improving the curriculum through the teaching of calculation

and discrimination. Communications of the ACM 34, 3 (March), to appear.

3. Frederick P. Brooks, Jr. 1987. No silver bullet: essence and accidents of software

engineering. IEEE Computer 20, 4 (April): 10-19.

4. David Pamas. 1990. Education for computing professionals. IEEE Computer23, 1

(January):17-22.

5. Barry Boehm. 1981. Software Engineering Economics. Prentice-Hall.



10/Beyond Formalism TR-91.4 (17 Jan 91)

6. Gerald Weinberg. 1986.

7. Frederick P. Brooks, Jr.

Engineering. Addison-Wesley.

8. Kososuke Matsushita. 1988. The secret is shared.

100, 2 (February).

9. Tom Peters. 1987.

Becoming a Technical Leader. Dorset House.

1975. The Mythical Man-Month: Essays on Software

Manufacturing Engineering

Thriving on Chaos. Harper & Row.

10. Lucy Suchman. 1988. Designing with the user. ACM Transactions on Office

Information Systems 6, 2 (April): 173-183.

11. Christiane Floyd. 1989. Out of Scandinavia: alternate approaches to software

design and system development. Human Computer Interaction 4, 4.

12. Eleanor Wynn. 1991. Taking practice seriously. In Design at Work: Cooperative

Design of Computer Systems (J. Greenbaum and M. Kyng, eds), Lawrence Erlbaum

Associates.

13. Femando Flores, Michael Graves, Brad Hartfield and Terry Winograd. 1988.

Computer systems and the design of user interaction. ACM Transactions on Office

Information Systems 6, 2 (April): 153-172.


